Home
Class 14
MATHS
" (iii) "(d^(2)y)/(dx^(2))=[y+((dy)/(dx)...

" (iii) "(d^(2)y)/(dx^(2))=[y+((dy)/(dx))^(2)]^((1)/(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the degree of the equation [(d^(2) y)/(dx^(2))] = [y + ((dy)/(dx))^(2) ]^(1/4)

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

what is the degree of the equation [(d^(2)y)/(dx^(2))]=[y+((dy)/(dx))^(2)]^1/4 ?

Write the degree of the differential equation a^(2)(d^(2)y)/(dx^(2))={1+((dy)/(dx))^(2)}^(1/4)

Order and degree of the differential equation (d^(2)y)/(dx^(2))={y+((dy)/(dx))^(2)}^(1//4) are

Order and degree of the differential equation (d^(2)y)/(dx^(2))={y+((dy)/(dx))^(2)}^(1//4) are

Order and degree of the differential equation (d^(2)y)/(dx^(2))={y+((dy)/(dx))^(2)}^(1//4) are

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)