Home
Class 11
MATHS
" Let "lambda=int(0)^(1)(dx)/(1+x^(3)),p...

" Let "lambda=int_(0)^(1)(dx)/(1+x^(3)),p=lim_(n rarr oo)[(prod_(t=1)^(n)(n^(3)+r^(2)))/(n^(3n))]^(1/n)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lambda=int_(0)^(1)(dx)/(1+x^(3)),p=(lim)_(n rarr oo)[(prod_(r=1)^(n)(n^(3)+r^(3)))/(n^(3n))]^(-) then ln p is equal to (a)ln2-1+lambda(b)ln2-3+3 lambda(c)2ln2-lambda(d)ln4-3+3 lambda

Let lambda=int_0^1(dx)/(1+x^3), p=lim_(n rarr oo)[prod_(r=1)^n(n^3+r^3)/(n^(3n))]^(1//n) then ln p is equal to (a) ln2-1+lambda (b) ln2-3+3lambda (c) 2ln2-lambda (d) ln4-3+3lambda

Let lambda=int_0^1(dx)/(1+x^3),p=(lim)_(n->oo)[(prod_(r=1)^n(n^3+r^3))/(n^(3n))]^(-1/n) then ln p is equal to (a) ln2-1+lambda (b) ln2-3+3lambda (c) 2ln2-lambda (d) ln4-3+3lambda

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =

lim_ (n rarr oo) prod_ (r = 3) ^ (n) (r ^ (3) -8) / (r ^ (3) +8)

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_(n rarr oo)((4+3n+n^(6))^((1)/(3)))/(1+3n+2n^(2))

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=