Home
Class 12
MATHS
If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))...

If `f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx` and f(0)=0, then the value of f(1) is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx=f(x)+C , then the value of (1)/(f(1)) is

If f(x)=int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx , and f(0)=0 , then the value of f(1) is a) -1//2 b) 1//4 c) 1//2 d) -1//4

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is