Home
Class 11
MATHS
lim[x->pi/2]cosx/[x-pi/2]...

`lim_[x->pi/2]cosx/[x-pi/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If l_1=lim_(xrarr-2)(x+|x|),l_2=lim_(xrarr-2)(2x+|x|) and l_(3)=lim_(xrarr pi//2)(cosx)/(x-pi//2) , then

If l_1=lim_(xrarr-2)(x+|x|),l_2=lim_(xrarr-2)(2x+|x|) and l_(3)=lim_(xrarr pi//2)(cosx)/(x-pi//2) , then

Evaluate: lim_(x->pi/2)(cosx)^(cosx)

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

Evaluate: ("lim")_(x->pi/2)(cosx)^(cosx)

(lim)_(x->0)(cosx)/(pi-x)

Evaluate the following limits : lim_(x to pi/2)(2^(-cosx)-1)/(x(x-pi/2))

Evaluate lim_(x->pi)(1-sinx/2)/(cosx/2(cosx/4-sinx/4)

lim_(xto pi/2)(2x-pi)/cosx