Home
Class 12
MATHS
यदि lim(x rarr 1) (x^(4) - 1)/(x-1)=lim(...

यदि `lim_(x rarr 1) (x^(4) - 1)/(x-1)=lim_(x rarr k) (x^(3) - k^(3))/(x^(2) - k^(2))` हो, तो k का मान है -

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

Find value of a if lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr a)(x^(3)-a^(3))/(x^(2)-a^(2))

Find the value of k, if lim_(x rarr 1) (x^(4)-1)/(x-1) = lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

lim_ (x rarr (1) / (2)) ((x ^ (4) -81) / (x-3))