Home
Class 12
MATHS
Value of lim(n to oo) ((n+1)^(1//3)+(n+2...

Value of `lim_(n to oo) ((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3)) is equal to

Value of underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3)) is equal to

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(xto oo) (1)/(n) {1+e^(1//n)+e^(2//n)+e^(3//n)+.....+e^((n-1)/(n))} is equal to

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

The value of lim_(n rarr oo)((1+(1)/(n(n+100))))/((1+(1)/(n(n+200)))^(n^(3))) is equal to

lim_(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+((n+2)^(1/3))/(n^(4/3))+.....+((2n)^(1/3))/(n^(4/3))) is equal to

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))