Home
Class 12
MATHS
माना f(x) = log(e) (sin x), (0 lt x lt p...

माना `f(x) = log_(e) (sin x), (0 lt x lt pi)` तथा `g(x) = sin^(-1) (e^(-x)), (x ge 0)` है। यदि एक धनात्मक वास्तविक संख्या `alpha` के लिए `a = (fog)' (alpha)` तथा `b = (fog) (alpha)` तब,

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = log _e (sinx ), ( 0 lt x lt pi ) and g(x) = sin ^(-1) (e ^(-x)), (x ge 0) . If alpha is a positive real number such that a = ( fog)' ( alpha ) and b = (fog ) ( alpha ) , then

Let f (x) = log _e (sinx ), ( 0 lt x lt pi ) and g(x) = sin ^(-1) (e ^(-x)), (x ge 0) . If alpha is a positive real number such that a = ( fog)' ( alpha ) and b = (fog ) ( alpha ) , then (A) aalpha ^(2) - b alpha - a = 0 (B) a alpha ^(2) - b alpha - a = 1 (C) a alpha ^(2) + b alpha - a = - 2 alpha ^(2) (D) a alpha ^(2) + b alpha + a = 0

If f(x) = log x and g(x) = e^x then fog(x) is :

Find f'(x) if f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

If f (x) = log x and g (x) = e^X , then (fog) (x) is :

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .