Home
Class 12
MATHS
Let y=y(x) be the solution of the differ...

Let y=y(x) be the solution of the differential equation, `dy/dx+y tan x=2x+x^(2)tanx, x in(-pi/2,pi/2),` such that y(0)= 1. Then (a) `y'(pi/4)-y'(-pi/4)=pi-sqrt 2` (b) `y'(pi/4)+y'(-pi/4)=-sqrt 2` (c) `y(pi/4)+y(-pi/4)=-pi^(2)/2+2.` (d) `y(pi/4)-y(-pi/4)=sqrt 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= y(x) is the solution of the differential equation dy/dx=(tan x-y) sec^(2)x, x in(-pi/2,pi/2), such that y (0)=0, than y(-pi/4) is equal to

Let y=g(x) be the solution of the differential equation sin x(dy)/(dx)+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

Let y=g(x) be the solution of the differential equation sinx ((dy)/(dx))+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

Let y=g(x) be the solution of the differential equation (sin(dy))/(dx)+y cos x=4x,x in(0,pi) If y(pi/2)=0,theny(pi/6)^(*) is equal to

Let y=y(x) be the solution of the differential equation, xy'-y=x^(2)(x cos x+sin x) If y(pi)=pi, then y'((pi)/(2))+y((pi)/(2)) is equal to :

Let y=y(x) be the solution of the differential equation sec^(2)xdx+(e^(2y)tan^(2)x+tan x)dy=0,0 lt x lt (pi)/(2), y(pi/4)=0 .If y(pi/6)=alpha ,then e^(8a) is equal to:

Find the particular solution of the differential equation : sec^2 x tan y dx- sec^2 y tan x dy=0 , given that y = pi/4,x = pi/4 .