Home
Class 12
MATHS
If the line ax + y = c, touches both t...

If the line `ax + y = c`, touches both the curves `x^(2) + y^(2) =1 and y^(2) = 4 sqrt2x`, then `|c|` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let common tangent to curves x^(2)+y^(2)=1 and y^(2)=4sqrt(2)x is y=-ax+c then |c| is equal

The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if

The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if

If the line x+by+c=0, (bc ne 0) , touches both the parabolas y^(2)=4x and x^(2)= -32y , then (b+c)/(8) is equal to

If the line y = x touches the curve y=x^(2)+bx+c at (1, 1), then …………

If the line x+y=0 touches the curve 2y^(2)=ax^(2)+b at (1,-1), then

If the line x+y=0 touches the curve 2y^(2)=ax^(2)+b at (1, -1), find a and b.

If the line x+by+c=0( bc!=0 ) touches both the parabolas y^(2)=4x and x^(2)=-32y then b+c=

If the line y=4x -5 touches the curve y^(2) =ax^(3) +b at the point (2,3) then a+b is