Home
Class 12
MATHS
The derivative of tan^(-1) ((sinx -cosx)...

The derivative of `tan^(-1) ((sinx -cosx)/(sinx +cosx))`, with respect to `(x)/(2)`, where `x in(0,(pi)/(2))` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of tan^(-1)((cosx - sinx)/(cosx + sinx)) with respect to 'x'

Find the derivative of tan^(-1)((cosx - sinx)/(cosx + sinx)) with respect to 'x'

The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)[(cosx)/(1+sinx)] is

The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)[(cosx)/(1+sinx)] is

The derivative of tan^(-1)[(sinx)/(1+cosx)] with respect to tan^(-1)[(cosx)/(1+cosx)] is

Find the derivative of tan^(-1)((sinx)/(1+cosx)) with respect to tan^(-1)((cosx)/(1+sinx))

(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)= , where x in (0, (pi)/(2))

(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)= , where x in (0, (pi)/(2))

Find the derivative of tan^(-1)((cosx+sinx)/(cosx-sinx)) w.r.t. x.