Home
Class 12
MATHS
I=int(0)^(2)log((2)/(x)-1)dx...

`I=int_(0)^(2)log((2)/(x)-1)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(-1)^(1)log((2-x)/(2+x))dx

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

Evaluate int_(-1)^(1)log((2+x)/(2-x))dx

Evaluate the following integrals (i) int_(-1)^(1) log((2-x)/(2+x))dx

int_(1)^(2)(log x)/(x)dx=

int_(0)^(1)log sin((pi)/(2)x)dx equals

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx