Home
Class 12
MATHS
If sum(i=1)^(5) (x(i) - 6) = 5 and sum(i...

If `sum_(i=1)^(5) (x_(i) - 6) = 5` and `sum_(i=1)^(5)(x_(i)-6)^(2) = 25`, then the standard deviation of observations

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum _(i=1) ^(9) (x _(i) - 5) = 9 and sum_(i =1) ^(9) (x _(i) - 5) ^(2) = 45, then the standard deviation of the 9 terms x _(1), x _(2),....,x _(9) is

If sum_(i=1)^(9) (x_(i)-5)=9 " and" sum_(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If sum_(i=1)^(18)(x_(i) - 8) = 9 and sum_(i=1)^(18)(x_(i) - 8)^(2) = 45 then find the standard deviation of x_(1), x_(2),….x_(18)

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If sum_(i=1)^9 (x_i - 5) = 9 and sum_(i=1)^9 (x_i - 5)^2 = 45. The standard deviation of the observations x_1, x_2,………,x_9 is ………….