Home
Class 12
MATHS
[" 5.सदिश "vec a" के लिये "|vec a timesh...

[" 5.सदिश "vec a" के लिये "|vec a timeshat i|^(2)+|vec a timeshat j|^(2)+|vec a timeshat k|^(2)" बराबर "],[" है - "vec a|^(2)quad " (b) "2|vec a|^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a|=2, then find the value of |vec a xxhat i|^(2)+|vec a xxhat j|^(2)+|vec a xxhat k|^(2)

If bar(a)=2hat i-hat j+2hat k then the value of |bar(a)timeshat i|^(2)+|bar(a)timeshat j|^(2)+|bar(a)timeshat k|^(2)=

If vec a = hat i - hat j and vec b = hat j + hat k then |vec a xx vec b|^(2) + |vec a. vecb|^(2) is equal to

If vec a = i-j+k and vec b = 2i+j-k then |2 vec a - vec b|=

Assertion (A): Let vec(a) = a_(1) vec(i) + a_(2) vec(j) + a_(3) vec(k) . Then identity |vec(a) xx vec(i)|^(2) + |vec(a) xx vec(j)|^(2) + |vec(a) xx vec(k)|^(2) =2|vec(a)|^(2) holds for vec(a) . Reason (R ): vec(a) xx vec(i) = a_(3) vec(j)- a_(2) vec(k), vec(a) xx vec(j) = a_(1) vec(k) - a_(3) vec(i), vec(a) xx vec(k)= a_(2) vec(i) - a_(1) vec(j) Which of the following is correct ?

If vec a = 2i-3j and vec b = 2i+3k then, (vec a + vec b). (vec a - vec b)

If vec a= i- j and vec b=- j+2k ,find (vec a-2 vec b)dot( vec a+ vec b)

If vec a=hat i-hat j and vec b=-hat j+2hat k, find (vec a-2vec b)*(vec a+vec b)

If vec a xx i+2vec a-4vec i-2vec j+vec k=0 then vec a=