Home
Class 12
MATHS
If lim(a->oo) 1/a int0^(oo) (x^2+ax+1)/(...

If `lim_(a->oo) 1/a int_0^(oo) (x^2+ax+1)/(1+x^4) . tan^(-1) (1/x) dx` is equal to `pi^2/k, where`k in N` equals to (A) 8 (B) 16 (C) 32 (D) 48

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^oo 1/(1+x^2)dx is equal to :

If lim_(a rarr infty) (1)/(a)int_(0)^(infty)(x^(2)+ax+1)/(1+x^(4)). "tan"^(-1)((1)/(x))dx is equal to (pi^(2))/(K), where K in N, then K equals to

lim_(x to oo) (1+k/x)^(mx) is equal to

lim_(x rarr oo)((pi)/(2)-tan^(-1)x)^((1)/(x)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

If a=lim_(x->oo) sinx/x & b=lim_(x->0) sinx/x Then int (ab log(1+x)+x^2)dx is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to