Home
Class 12
MATHS
If the value of definite integral int1...

If the value of definite integral `int_1^a x*a^-[log_ a x]dx,` where `a >1` and [x] denotes the greatest integer, is, `(e-1)/2` then the value of equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of definite integral int_1^a x*a^-[log_ a x]dx, where a >1 and [x] denotes the greatest integer, is, (e-1)/2 then the value of a equal to

The value of the integral, int_1^3 [x^2-2x–2]dx , where [x] denotes the greatest integer less than or equal to x, is :

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

The value of int_(-1)^(1)x^(2)e^([x^(3)])dx , where [t] denotes the greatest integer le t , is :

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is