Home
Class 12
MATHS
The value of int- 1^1x/(sqrt(1-x^2))*si...

The value of `int_- 1^1x/(sqrt(1-x^2))*sin^(- 1)(2xsqrt(1-x^2)) dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .

int(sqrt(x-1))/(xsqrt(x+1))dx is equal to