Home
Class 12
MATHS
Suppose the function gn(x)=x^(2n+1)+an x...

Suppose the function `g_n(x)=x^(2n+1)+a_n x+b_n(N in N)` satisfes the equation `int_-1^1 (px + q)g_n(x)dx=0` for all linear functions `(px+q)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose the function f(x)=x^(n),n!=0 is differentiable for all x. Then n can be any element of the interval

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

The maximum number of real roots of the equation x^(n)+px+q=0,(n in N), is

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I