Home
Class 12
MATHS
f(x)={[2x+3," यदि "x<=2],[2x-3," यदि "x>...

f(x)={[2x+3," यदि "x<=2],[2x-3," यदि "x>2]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[[x-3 , 2 x^2-18 , 3 x^3-81],[ x-5 , 2 x^2-50 , 4 x^3-500],[ 1 , 2 , 3 ]] then f(1) . f(3)+f(3) . f(5)+f(5) . f(1)=

f(x)=2x+3 if x 2

f(x)=4x-1, " if " x gt4 =x^(2)-2, " if " -2 le x le 3 =3x+4," if " x lt -2. Then f(5)+f(2)+f(-3)=

If f(x)=2x+3, find f[f(x)] .

Find the point (s) of discontinuity of f (x), if : f(x)= {(2x+3,if,x,le,2),(2x-3,if,x,>,2):}

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

A function f is defined by f(x)=3-2x . Find x such that f(x^(2))=(f(x))^(2).

A function f is defined by f(x)=3-2x . Find x such that f(x^(2))=(f(x))^(2).

If f(x)=x^2 -3x +1 find x in R such that f(2x)=f(x).

If f: R to R is defined by f(x) = 2x+|x| , then show that f(3x) -f(-x) -4x=2f(x) .