Home
Class 11
MATHS
" f) "(dy)/(dx)=e^(x+y)...

" f) "(dy)/(dx)=e^(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

Express the following differential equation in the form f(x)dx+g(y)dy=0 . (dy)/(dx)=e^(x-y)+x^(2)e^(-y)

Solve : (dy)/(dx)=e^(x+y)+x^(2)e^(y)

Express the following differential equations in the form f(x)dx+g(y)dy = 0 (i) (dy)/(dx) = (2y)/(x) (ii) x+y(dy)/(dx) = 0 (iii) (dy)/(dx) = e^(x-y) + x^(2).e^(-y) (iv) (dy)/(dx) + x^(2) = x^(2)e^(3y)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

Solve ((dy)/(dx))=e^(x-y)(e^(x)-e^(y))

Solve (dy)/(dx)= e^(x-y) + x^2 e^(-y) .

Solve: (dy)/(dx)=e^(x-y)+x^2e^(-y)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .