Home
Class 12
MATHS
" The function "f:R rarr R,f(x)=(e^(|x|)...

" The function "f:R rarr R,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x))," is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

Function f:R rarr R;f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) is :

Let f:R rarr R be a function defined by,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

Let f:R rarr R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then -(1) fis bijection (2) fis an injection only (3) f is a surjection fis neither injection nor a surjection

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)) . Then, f is a bijection (b) f is an injection only (c) f is surjection on only (d) f is neither an injection nor a surjection