Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=1, then the range o...

If `a^(2)+b^(2)+c^(2)=1`, then the range of `ab+bc+ca` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2)=2 then the range of ab+bc+ca is

If a, b and c real numbers such that a^(2) + b^(2) + c^(2) = 1, then ab + bc + ca lies in the interval :

If a,b,c in R and a^(2)+b^(2)+c^(2)=1, then the possible values of [ab+bc+ca] are

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (a) ab+bc+ca=(1)/(2)( b) ab+bc+ca=(1)/(2)( c) a^(4)+b^(2)+c^(4)=(1)/(2)( d) a^(4)+b^(4)+c^(4)=(3)/(2)

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :

If a+b+c=4 and a^(2)+b^(2)+c^(2)+3(ab+bc+ac)=21 where a, b, c in R then ab+bc+ca=