Home
Class 12
MATHS
sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(...

`sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin[tan^(-1)((1 - x^2)/(2x)) + cos^(-1) ((1 - x^2)/(1 + x^2))] = 1

The value of sin [tan ^(-1)((1-x^(2))/(2 x))+cos ^(-1)((1-x^(2))/(1+x^(2)))]=

Prove that: sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

The value of cos[2tan^(-1)(1+x)/(1-x)+sin^(-1)(1-x^(2))/(1+x^(2))] is

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

3 sin ^(-1)((2 x)/(1+x^(2)))-4 cos ^(-1)((1-x^(2))/(1+x^(2))) +2 tan ^(-1)((2 x)/(1-x^(2)))=(pi)/(3) ( then ) x=

(3 sin^(-1)) ((2x)/(1+x^2)) - (4 cos^(-1)) ((1-x^2)/(1 + x^2)) + (2 tan^(-1)) ((2x)/(1-x^2)) = π/3