Home
Class 8
MATHS
[" The domain of the function "],[f(x)=(...

[" The domain of the function "],[f(x)=(1)/(sqrt({sin x}+{sin(pi+x)}))" where "{*}" denote the "],[" fractional part is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

" 4.The domain of the function "f(x)=(1)/(sqrt({sin x}+{sin(pi+x)}))" where "{" -} denotes the fractional part,is "

The domain of the function f(x)=(1)/(sqrt({sin x}+{sin(pi+x)})) where {.} denotes the fractional part,is (a) [0,pi](b)(2n+1)(pi)/(2),n in Z(c)(0,pi)(d) none of these

The domain of the function f(x)=(1)/(sqrt(|sin x|+sin x)) is

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The domain of the function f(x)=(sqrt(x^(12)-x^(3)+x^(4)-x+1))/(2sqrt(2{x}^(2)-3{x}+1)) (where {} denotes the fractional part functio) is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Range of the function f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x} , where {*} denotes fractional part function