Home
Class 10
MATHS
If the diagram in Fig. 2.22 shows the gr...

If the diagram in Fig. 2.22 shows the graph of the polynomial `f(x)=a x^2+b x+c` , then (FIGURE) (a) `a >0,\ \ b<<0\ a n d\ c>>0` (b) `a<0,\ b<0\ a n d\ c<0` (c) `a<<0,\ b>>0\ a n d\ c >0` (d) `a<<0,\ b>>0\ a n d\ c<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Figure 2.23 show the graph of the polynomial f(x) = ax² + bx + c for which (a) a 0 and c > 0 (b) a 0 (c) a 0, b > 0 and c < 0

Figure 2.23 shows the graph of the polynomial f(x)=a x^2+b x+c for which (FIGURE) (a) a<<0,\ \ b>>0\ a n d\ c >0 (b) a<0, blt0 and cgt0 (c) a<0,\ b<0\ a n d\ c<0 (d) a >0,\ b >0\ a n d\ c<0

Figure 2.23 shows the graph of the polynomial f(x)=a x^2+b x+c for which (FIGURE) (a) a<<0, b>>0 a n d c >0 (b) a<0, blt0 and cgt0 (c) a<0, b<0 a n d c<0 (d) a >0, b >0 a n d c<0

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig A) a c 0 c) a b >0 d ) a b c<0

If fig shows the graph of f(x)=ax^(2)+bx+c, then Fig ac 0 c.ab>0 d.abc<0

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig a. c b. b c >0 c. a b >0 d. a b c<0

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig a. c 0 c. a b >0 d. a b c<0

If a\ a n d\ b are two numbers such that a b\ =\ 0 , then (a) a\ =\ 0\ a n d\ b\ =\ 0 (b) a\ =\ 0\ or\ b\ =\ 0 (c) a\ =\ 0\ a n d\ b!=0 (d) b\ =\ 0\ a n d\ a!=0

Let f,\ g\ a n d\ h be real-valued functions defined on the interval [0,\ 1] by f(x)=e^x^2+e^-x^2,\ g(x)=x e^x^2+e^-x^2\ a n d\ h(x)=x^2e^x^2+e^-x^2 . If a , b ,\ a n d\ c denote respectively, the absolute maximum of f,\ g\ a n d\ h on [0,\ 1], then a=b\ a n d\ c!=b (b) a=c\ a n d\ a!=b a!=b\ a n d\ c!=b (d) a=b=c

Let f(x)=a x^2+b x+c. Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0