Home
Class 12
MATHS
A polynomial function f(x) satisfies the...

A polynomial function f(x) satisfies the condition `f(x)f(1/x)=f(x)+f(1/x)` for all `x inR`,`x!=0`. If f(3)=-26, then f(4)=

Promotional Banner

Similar Questions

Explore conceptually related problems

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

Polynomial function f(x) satisfying the condition f(x), f(1/x)=f(x)+f(1/x) . If f(10)=1001, then f(20) is

The function y=f(x) satisfying the condition f(x+(1)/(x))=x^(3)+(1)/(x^(3)) is

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

The function y=f(x) satisfying the condition f(x+1//x) =x^(3)+1//x^(3) is:

A polynomial f(x0 satisfies the condition f(x).f(1/x)=f(x)+f(1/x) and f(10) = 1001, then the value of f(2) =?

let f(x) be the polynomial function. It satisfies the equation 2 +f(x)* f(y) = f(x) + f(y) +f(xy) for all x and y. If f(2) =5 find f|f(2)| .

A polynomial function F(x) satisfies the condition F{F{F(x)}}=8x+2 then find the value of F(7)