Home
Class 12
MATHS
Let [] represents the greatest integer f...

Let [] represents the greatest integer function and `[cos^(-1)sin^(-1)tan^(-1)x]=1` then 'x' lies in the intervel.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [*] representes the greatest integer function and [cos^(-1)(tan^(-1)x)]=2, then the maximum value of x is

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

If [x] represents the greatest integer function and f(x)=x-[x]-cos x" then "f^(1)(pi/2)=

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let [x] be the greatest integer function f(x)=((sin((1)/(4)(pi[x])))/([x])) is

Statement 1:lim_(x rarr0)[(tan^(-1))/(x)]=0, where [.] represents greatest integer function. Statement 2:(tan^(-1))/(x)<1 in the neighbourhood of x=0