Home
Class 12
MATHS
If x=3 , then log4(2log3(1+log2(1+3log...

If `x=3` , then `log_4(2log_3(1+log_2(1+3log_3x)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

log_2 [log_3(log_2 x)]=1

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

The number of values of x if log_4(2log_3(1+log_2(1+3log_3x)))=1/2

log_(2)log_(3)log_(4)(x-1)>0

Determine x if log_3 {log_2 (log_2 x)}=1

if log(x-1) + log(x+1) = 3 log2 , then x is equal to:

If log_2 log_3 log_4 (x+1) =0, then x is :-

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to