Home
Class 12
MATHS
The value of x satisfying 5^logx-3^(lo...

The value of x satisfying `5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1)` , where the base of logarithm is 10 is not : 67 divisible by

Promotional Banner

Similar Questions

Explore conceptually related problems

Tho solution of the equation 7^(logx)-5^(logx+1)=3.5^(log-x1)-13.7 ^(logx-1)is

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx