Home
Class 12
MATHS
Number of real values of x satisfying th...

Number of real values of x satisfying the equation `log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

log_(x^2+6x+8)log_(2x^2+2x+3)(x^2-2x)=0 holds for

The value of x satisfying the equation log_(2)(x^(2)-2x+5)=2 is

Number of real values of x satisfying the equation log_(2)(x^(2)-x)*log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is (a)0(b)2(c)3(d)7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

The value of x satisfying the equation (log_(2)2x)(log_(2)^(2)x+log_(2)((2)/(x)))=2

Find the values of x satisfying log_(x^(2)+6x+8)log_(2x^(2)+2x+3)(x^(2)-2x)=0 is