Home
Class 12
MATHS
10^(logp(logq(logr(x))))=1 and logq(logr...

`10^(log_p(log_q(log_r(x))))=1` and `log_q(log_r(log_p(x)))=0`, then 'p' is equals a. `r^(q/r)` b. `rq` c. 1 d. `r^(r/q)`

Promotional Banner

Similar Questions

Explore conceptually related problems

10^(log_p(log_q(log_r(x))))=1 and log_q(log_r(log_p(x)))=0 then 'p' equals

10^(log_(p)(log_(q)(log_(r)(x))))=1 and log_(q)(log_(r)(log_(p)(x)))=0 then 'p' equals

10^(log_(p)(log_(q)(log_(r)x)))=1 and log_(q)(log_(r)(log_(p)x))=0 then p equals to:

IF 10^(log_p{log_q(log_rx)}) =1 and log _q{log_r(log_px)}=0 . The value of q is

IF 10^(log_p{log_q(log_rx)}) =1 and log _q{log_r(log_px)}=0 . The value of q is

IF 10^(log_p{log_q(log_rx)}) =1 and log _q{log_r(log_px)}=0 . The value of q is

IF 10^(log_p{log_q(log_r x)}) =1 and log _q{log_r(log_px)}=0 . The value of x is

IF 10^(logp{logq(logr^x)}) =1 and log _q{log_r(log_px)}=0 . The value of x is

IF 10^(logp{logq(logr^x)}) =1 and log _q{log_r(log_px)}=0 . The value of x is

log_(a)((P)/(Q))=log_(a)P-log_(a)Q