Home
Class 12
MATHS
DeltaABC में यदि (a^(2)-b^(2))/(a^(2)+b^...

`DeltaABC` में यदि `(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B))` तो त्रिभुज है

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a DeltaABC, (a^(2)-b^(2))/(a ^(2)+b^(2))=(sin (A-B))/(sin (A+B)), then the triangle is

In a DeltaABC" show that "(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In DeltaABC show that (b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In DeltaABC, (a^(2)+b^(2))/(a^(2)-b^(2))=(sin(A+B))/(sin(A-B)) , prove that the triangle is isosceles or right triangle.

((a^(2) - b^(2) sin A sin B) /( 2 sin ( A- B)))

In DeltaABC=(b^(2)+c^(2))/(b^(2)-c^(2))=(Sin(B+C))/(Sin(B-C)) then the triangle is

In any DeltaABC , prove that : (b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In DeltaABC,(b^2-c^2)/a^2sin^2A+(c^2+a^2)/b^2 sin^2B=