Home
Class 12
MATHS
If (2sinalpha)/({1+cosalpha+sinalpha})=...

If `(2sinalpha)/({1+cosalpha+sinalpha})=y`, then `({1-cosalpha+sinalpha})/(1+sinalpha)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (2sinalpha)/(1+cosalpha+sinalpha)=y , then prove that (1-cosalpha+sinalpha)/(1+sinalpha) is also equal to y.

If (2sinalpha)/(1+cosalpha+sinalpha) =x, then (1-cosalpha+sinalpha)/(1+sinalpha) =

If (2sinalpha)/(1+cosalpha+sinalpha)=x then find (1-cosalpha+sinalpha)/(1+sinalpha)

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="a (b) y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=a (c) y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=a (d) y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="alpha(b)y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=alpha(c)y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=alpha(d)y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=alpha

If sin.alpha/2+cos.alpha/2=1.4, then: sinalpha=

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) , then sinalpha+cosalpha and sinalpha-cosalpha is equal to

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a