Home
Class 10
MATHS
=0quad " (2) "y^(2)=5y-10...

=0quad " (2) "y^(2)=5y-10

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the diameter of the circle which cuts three circles x^(2)+y^(2)-xy-14=0 x^(2)+y^(2)+3x-5y-10=0 x^(2)+y^(2)-2x+3y-27=0 M orthogonally, is

Solution of D.E (dy)/(dx)=(2x+5y)/(2y-5x+3) is,if (y(0)=0) (1) x^(2)-y^(2)+5xy-3y=0 (2) x^(2)+y^(2)+5xy-3y=0 (3) x^(2)-y^(2)+5xy+3y=0 (4) x^(2)-y^(2)-5xy-3y=0

The equation to the locus of a point P for which the distance from P to (0,5) is double the distance from P to y -axis is 1) 3x^(2)+y^(2)+10y-25=0 2) 3x^(2)-y^(2)+10y+25=0 3) 3x^(2)-y^(2)+10y-25=0 4) 3x^(2)+y^(2)-10y-25=0

The equation of the circle whose diameter is the common chord of the circles; x^(2)+y^(2)+3x+2y+1=0&x^(2)+y^(2)+3x+4y+2=0 is x^(2)+y^(2)+8x+10y+2=0x^(2)+y^(2)-5x+10y+7=0x^(2)+y^(2)-5x+4y+7=02x^(2)+2y^(2)+6x+2y+1=0 None of these

Angle of intersection of x^(2)+y^(2)-6x-2y-10=0 and y=2x-5

From a point R(5,8), two tangents RPandRQ are drawn to a given circle S=0 whose radius is 5. If the circumcenter of triangle PQR is (2,3), then the equation of the circle S=0 is x^(2)+y^(2)+2x+4y-10=0x^(2)+y^(2)+x+2y-10=0x^(2)+y^(2)-x+2y-20=0x^(2)+y^(2)+4x-6y-12=0

(i) x^(2) + 6x + 5 = 0 (ii) y^(2) -10y+21 = 0

The four lines given by y^(2)-4 y+3=0 and x^(2)+4 x y+4 y^(2)-5 y-10 y+4=0 form a

I. 3x^(2) - 17x+10 = 0 II. 2y^(2) -5y+3 = 0