Home
Class 12
MATHS
tan^(-1)(sqrt(1+x^(2)-1))/(x)-(1)/(2)tan...

tan^(-1)(sqrt(1+x^(2)-1))/(x)-(1)/(2)tan^(-1)x=

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

tan^-1 [(1)/(sqrt(x^2-1))]