Home
Class 9
MATHS
" (v) "(1)/(4)x^(2)+y^(2)+(1)/(16)z^(2)-...

" (v) "(1)/(4)x^(2)+y^(2)+(1)/(16)z^(2)-xy-(1)/(2)yz+(1)/(4)zx

Promotional Banner

Similar Questions

Explore conceptually related problems

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals

If xy+yz+zx=1 show that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

det [[prove ,, x ^ (2), y ^ (2), z ^ (2) (x + 1) ^ (2), (y + 1) ^ (2), (z + 1) ^ ( 2) (x-1) ^ (2), (y-1) ^ (2), (z-1) ^ (2)]] = - 4 (xy) (yz) (zx)

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= 4xyz/((1-x^(2))(1-y^(2)) (1-z^(2)))