Home
Class 11
MATHS
If the line l x+m y-1=0 touches the circ...

If the line `l x+m y-1=0` touches the circle `x^2+y^2=a^2` , then prove that `(l , m)` lies on a circle.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.

If the line l x+m y+n=0 touches the circle x^2+y^2=a^2 , then prove that (l^2+m^2)a^2=n^2dot

If 1x+my-1=0 touches the circle x^(2)+y^(2)=a^(2) then the point (1,m) lies on the circle

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)

If the line px+qy=1 touches the circle x^(2)+y^(2)=r^(2), prove that the point (p,q) lies on the circle x^(2)+y^(2)=r^(-2)

If lx + my = 1 touches the circle x^2 + y^2 = a^2 , prove that the point (l, m) lies on the circle x^2 + y^2 = a^(-2)

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2