Home
Class 12
MATHS
If f :R ->R , f(x)=x^3 +3,and g:R->R,g(x...

If `f :R ->R` , `f(x)=x^3 +3`,and `g:R->R`,`g(x)=2x + 1`, then `f^(-1)og^(-1)(23)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f :R ->R , f(x)=x^3 +3 ,and g:R->R , g(x)=2x + 1 , then f^(-1)(g^(-1)(23)) equals

If f :R ->R , f(x)=x^3 +3 ,and g:R->R , g(x)=2x + 1 , then f^(-1)(g^(-1)(23)) equals

If f :R ->R , f(x)=x^3 +3 ,and g:R->R , g(x)=2x + 1 , then f^(-1)g^(-1)(23) equals

If f:R rarr R,f(x)=2x-1 and g:R rarr R,g(x)=x^(2) then (gof)(x) equals

If f : R to R , f (x) =x ^(3) and g: R to R , g (x) = 2x ^(2) +1, and R is the set of real numbers then find fog(x) and gof (x).

Let f:R→R: f(x)=x+1 and g:R→R: g(x)=2x−3 . Find (f−g)(x) .

If f:R rarr R,f(x)=2x;g:R rarr Rg(x)=x+1, then (f*g)(2) equals

If quad f:R rarr R,f(x)=2x;g:R rarr R,g(x)=x+1 then (fg)(2) equals

If f:R rarr R and g:R rarr R are define by f(x)=3x-4 and g(x)=2+3x , then (g^(-1)of^(-1))(5)=