Home
Class 12
MATHS
[lim(n rarr oo)((1^(2)+2^(2)+3^(2)+...+n...

[lim_(n rarr oo)((1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3)))" equals "],[[" (1) "oo," (2) "0],[" (2) "10," (4) "1/3]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

lim_ (n rarr oo) (1 ^ (2) + 2 ^ (2) ... + n ^ (2)) / (n ^ (3))

lim_(n rarr oo) {(1^(m)+2^(m)+3^(m)+…….+n^(m))/(n^(m+1))} equals

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(2^(3n))/(3^(2n))=

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

(lim_(n rarr oo)(1^(2)+2^(2)+3^(2)++n^(2))/(n^(3)) is equal to a.1b*c*1/3d.0

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =