Home
Class 12
MATHS
The product of the four values of ((1)/(...

The product of the four values of `((1)/(2)+i(sqrt(3))/(2))^(1/4)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

" The product of the four values of "((1)/(2)+i(sqrt(3))/(2))^(3/4) , is

The value of (1+i sqrt(3))^2 =

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))

If w is the cube root of unity then find the value ((-1+i sqrt(3))/(2))^(18)+((-1-i sqrt(3))/(2))^(18)

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

If i = sqrt(-1) , then 4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(2)+i(sqrt(3))/(2))^(124) is equal to

Find the value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2)

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?