Home
Class 12
MATHS
Sum of values of absolute maxima and min...

Sum of values of absolute maxima and minima of `f(x)=(x^(2)+x+7)/(x^(2)-x+3)(x in R),` is `(lambda)/(11)` then value of `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of values of absolute maxima and minima of f(x)=(x^(2)+x+7)/(x^(2)-x+3)(x in R), is (lamda)/(11) , then value of lamda is

. The ratio of absolute maxima and minima of f(x)=(x^(2)-x+1)/(x^(2)+x+1)x varepsilon R is

Find all the points of local maxima and minima of the f(x)=x^(3)-6x^(2)+9x-8

f(x)=(log x)/(x) ,x>0 is decreasing if x> lambda then value of lambda is

The number of points of maxima/minima of f(x)=x(x+1)(x+2)(x+3) is

If 2^(f(x))=(2+x)/(2-x),x in(-2,2) and f(x)=lambda f((8x)/(4+x^(2))) then value of 'lambda' will be

Find the local maxima and minima of the function f(x)=x^(3)-2x^(2)+x+6 .

Find the local maxima and minima of the function f(x)=2x^(3)-21x^(2)+36x-20 .

If x(sgn x)(sgn x)+|x|(sgnx)^(3)=lambda x^(mu), then the value of lambda+mu is: