Home
Class 11
MATHS
If f(x)=|x-2| ,then (a) lim(x rarr2+)f...

If `f(x)=|x-2|` ,then
(a) `lim_(x rarr2+)f(x)!=0`
(b) `lim_(x rarr2-)f(x)!=0`
(c) `lim_(x rarr2+)f(x)!=lim_(x rarr2-)f(x)`
(d) `f(x)` is continuous at `x=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)={-1,AA x 2} then (i)f(x)=1, (ii) lim_(x rarr-1^(+))f(x)=1 (ii) lim_(x rarr2^(+))f(x)=-1(iv)lim_(x rarr2^(-))f(x)=0

Find lim_(x rarr2)f(x) when lim_(x rarr2)(f(x)-5)/(x-2)=3

If lim_(x rarr-2)(f(x))/(x^(2))=1, find (i)lim_(x rarr-2)f(x) and (ii) lim_(x rarr-2)(f(x))/(x)

If lim_(x rarr-2)(f(x))/(x^(2))=1, find (i)lim_(x rarr-2)f(x);(ii)lim_(x rarr-2)(f(x))/(x)

lim_(x rarr a)[f(x)+g(x)]=2 and lim_(x rarr a)[f(x)-g(x)]=1 then lim_(x rarr a)f(x)g(x)

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

lim_(x rarr5)f(x)=2 and lim_(x rarr5)g(x)=0, then lim_(x rarr5)(f(x))/(g(x)) does not exist.

If lim_(x rarr5)f(x)=0 and lim_(x rarr5)g(x)=2, then Lim_(x rarr5)(f(x))/(g(x)) does not exist.

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to