Home
Class 12
MATHS
Multiplicative inverse of x+ iy is O (...

Multiplicative inverse of `x+ iy` is
O `(x-iy)/(x^(2)+y^(2))`
O `(x+iy)/(x^(2)+y^(2))`
O `(x-iy)/(x^(2)-y^(2))`
O `(x+iy)/(x^(2)-y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The multiplicative inverse of non-zero complex z=x+iy is (x-iy)/(x^(2)-y^(2)) (x-iy)/(x^(2)+y^(2)) (x+iy)/(x^(2)+y^(2)) (-x+iy)/(x^(2)+y^(2))

The multiplicative inverse of z=x+iy is

If (a+ib)(x+iy)=(a^(2)+b^(2))i , then (x,y) is

find the real no.x and y if (x+iy)

If (1+i)^(100)=2^(49)(x+iy) then x^(2)+y^(2)=

If (1+i)^(100)=2^(49)(x+iy) then x^(2)+y^(2)=

If (x+iy)^(3)=u+iv then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv, then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))