Home
Class 12
MATHS
मान लीजिए कि f(x +y) = f(x) f(y) और f(x)...

मान लीजिए कि `f(x +y) = f(x) f(y)` और `f(x) = 1 + xg(x) phi (x)` है, जहाँ `underset(xrarr0)"lim"g(x) = a`और `underset(xrarr0)"lim" phi (x) = b` है । तब `f'(x)` किसके बराबर है ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(|x|)/(x),"show that ,"underset(xrarr0)"lim"f(x) does not exist .

Does underset(xrarra)"lim"f(x)=underset(xrarra)"lim"phi(x) "always imply" f(x)=phi(x) ? Justify your answer .

If f(x + y) = f(x)f(y) for all x, y and and f(x) = 1 + x g(x), where lim_(xrarr0)g(x)=1 ) , show that f'(x) = f(x).

Find underset(xrarr0)lim f(x) , where f(x)={(|x|/x, xne0),(0, x=0):}

Draw the graph of y=f(x)=(x^(2))/(x) and from the graph examine whether underset(xrarr0)"lim"f(x) exists or not .

Let f(x+y)=f(x)f(y) and where f(x)=1+xg(x)phi(x) , lim_(xto0)g(x)=a and lim_(xto0)phi(x)=b Then what is f'(x) equal to ?

Let f(x+y)=f(x)f(y)andf(x)=1+xg(x)phi(x)" where "lim_(x to 0) g(x)=a andlim_(x to 0) phi(x)=b . Then what is f(x) equal to?

Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim_(xrarr0)phi(x)=1, then f'(x) is equal to