Home
Class 10
MATHS
Prove that : sec^(2)theta+"cosec"^(2)th...

Prove that : `sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sec^(2)theta+"cosec"^(2)theta=sec^(2)thetaxx"cosec"^(2)theta.

Prove that (i) sec^(2) theta + "cosec"^(2) theta = sec^(2) theta "cosec"^(2) theta (ii) tan^(2) theta - sin^(2)theta = tan^(2)theta sin^(2)theta (iii) tan^(2) theta + cot^(2)theta +2 = sec^(2) theta "cosec"^(2) theta

sec^2theta/(cosec^(2)theta) =

sec^(2)theta+csc^(2)theta=sec^(2)theta xx cos e^(2)theta

Prove that cosec^(2) theta + sec^(2) theta = cosec^(2) theta sec^(2) theta .

Prove that: sec^(2)theta+csc^(2)theta>=4

Prove that, sec^2theta+cosec^2theta=sec^2theta*"cosec"^2theta.

Prove that (tan theta + cot theta)^(2) = "sec"^(2) theta + "cosec"^(2)theta = "sec"^(2) theta. "cosec"^(2) theta .

Prove that (cosec^(2)theta+sec^(2)theta)/(cosec^(2)theta-sec^(2)theta)=(1+tan^(2)theta)/(1-tan^(2)theta)

Prove that 2 sec ^(2) theta-2 cosec^2theta-sec ^(4) theta+cosec^4 theta=cot ^(4) theta-tan ^(4) theta