Home
Class 12
MATHS
If f(x)=|(x^n, sinx, cosx),(n!, sin((npi...

If `f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)|`, then show that `d^n/dx^n [f(x)]` at x=0` is 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

Let "f(x)"=|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

Let "f(x)"|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

If f(x)=|[x^n, n!, 2; cosx, cos((npi)/2), 4; sinx ,sin((npi)/2), 8]| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

If f(x)=det[[x^(n),n!,2cos x,cos((n pi)/(2)),4sin x,sin((n pi)/(2)),8]], then find the value of (d^(n))/(dx^(n))[f(x)]_(x=0)]|

If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot