Home
Class 12
MATHS
The angle between the tangents to the cu...

The angle between the tangents to the curves `y=x^2a n dx=y^2a t(1,1)` is `cos^(-1)(4/5)` (b) `sin^(-1)(3/5)` `tan^(-1)(3/4)` (d) `tan^(-1)(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the tangents to the curves y=x^(2) and x=y^(2)at(1,1) is cos^(-1)((4)/(5))(b)sin^(-1)((3)/(5))tan^(-1)((3)/(4))(d)tan^(-1)((1)/(3))

The angle between tangents to the curves y=x^(2) and x^(2)=y^(2) at (1,1) is (A) cos^(-1)(4/5) (B) sin^(-1)(3/5) (C) tan^(-1)(3/4) (D) tan^(-1)(1/3)

tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=

The angle between the curves y^2=x and x^2=y at (1,\ 1) is tan^(-1)4/3 (b) tan^(-1)3/4 (c) 90 (d) 45

The acute angle between the curve y^2=x and x^2=y at (1,1) is a) tan^-1(4/5) b) tan^-1(3/4) c) tan^-1(1) d) tan^-1(4/3)

The angle between the curves y^2=x and x^2=y at (1,\ 1) is tan^(-1)4/3 (b) tan^(-1)3/4 (c) 90o (d) 45o

2tan^(-1)(-2) is equal to (a) -cos t^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -picot^(-1)(-3/4)

2tan^(-1)(-2) is equal to (a) -cos t^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -picot^(-1)(-3/4)

2tan^(-1)(-2) is equal to (a) -cos^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -pi+cot^(-1)(-3/4)

The angle between the curves, y = x^(2) and y^(2) - x = 0 at the point (1, 1) is a) (pi)/(2) a) tan^(-1)""(4)/(3) c) (pi)/(3) d) tan^(-1)""(3)/(4)