Home
Class 12
MATHS
The function 'g' defined by g(x)= sin(si...

The function 'g' defined by `g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1` (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

Promotional Banner

Similar Questions

Explore conceptually related problems

The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin^(-1) sqrt({x}) , {.} denotes fractional part function is

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

log(x-3) is (A) is an even function (B) an odd function (C) neither even nor odd (D) cannot be determined

The function f(x)=log(x+sqrt(x^(2)+1)) , is (a) an even function (b) an odd function (c ) a periodic function (d) Neither an even nor an odd function.

The function f(x) = tan(x)^(11)e^(x^5)sgn(x^(11)).[1/(3x^2+2)] , where [.] denotes greatest integer function , is a)even function b)odd function c)even as well as odd function d)neither even nor odd function

Express each of e^x+ sin x function as the sum of an even function and an odd function.

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function