Home
Class 12
MATHS
Consider f (x) = x ^(ln x), and g (x) = ...

Consider `f (x) = x ^(ln x), and g (x) = e ^(2) x.` Let `alpha and beta` be two values of x satisfying `f (x) = g(x)( alpha lt beta)`
If `h (x) = (f (x))/(g (x))` then `h'(alpha)` equals to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) lim _(x to beta) (f (x) -c beta)/(g (x) - beta ^(2))=l then the value of x -l equals to:

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) lim _(x to beta) (f (x) -c beta)/(g (x) - beta ^(2))=l then the value of x -l equals to:

Consider , f(x) = x^(lnx) and g(x) = e^2x let alpha and beta (alpha lt beta) be two values of x satisfying the equation f(x)=g(x) . If h(x) = (f(x))/(g(x)) then h'(alpha) is equal to :

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

Let f(x)=sinx,g(x)=x^2 and h(x) = log x. If F(x)=(h(f(g(x)))) , then F'(x) is: