Home
Class 12
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^3-15 x^2+36 x-48` on the set `A={x|x^ 2+20lt=9x}` is______.

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set A={x|x^(2)|20<=9x} is

The maximum value of the funtion f(x)=2x^(3)-15x^(2)+36x-48 on the set A={x|x^(2)+20le9x} is

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set a={x|x^(2)+20le9x} is

The maximum value of the function 2x^(3)-15x^(2 ) + 36x+4 is attained at a)0 b)3 c)4 d)2

Determine the maximum and minimum values of the function f(x)=2x^3-15x^2+36x+10

Find the maximum and minimum value of the function f(x)=x^3-6x^2+9x+15 .

The maximum value of f(x) = 2x^(3) -21 x^(2) +36x +20 in 0 le x le 2

Find the maximum and minimum values of the function : f(x) = 2x^3 - 15x^2 + 36x + 11 .