Home
Class 11
MATHS
Let S(t) be the area of the DeltaOAB wit...

Let `S(t)` be the area of the `DeltaOAB` with `O(0,0,0), A(2,2,1) and B(t,1,t+1)`The value of the definite integral `int_1^e (S(t))^2In tdt` , is equal to `((e^3+a)/b^2)` where `a,b in N` ,find `(a+b)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S(t) be the area of the Delta OAB with O(0,0,0),A(2,2,1) and B(t,1,t+1) The value of the definite integral int_(1)^(e)(S(t))^(2)Intdt, is equal to ((e^(3)+a)/(b^(2))) where a,b in N, find (a+b).

If int_0^1 (e^t)/(1 + t) dt = a, then int_0^1 (e^t)/((1 + t)^(2))dt is equal to:

If area of pentagon PQRST be 7 ,where P(-1,-1),Q(2,0),R(3,1),S(2,2) and T(-1,t),t>0, then the value of t is

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

The value of int_(1/e)^tanx(tdt)/(1+t^2)+int_(1/e)^cotxdt/(t(1+t^2) is